fractal dimension_fractal dimension 翻译
如果您对fractal dimension感兴趣,那么我可以提供一些关于它的背景和特点的信息,以及一些相关的资源和建议。
1.dimensions 是什么意思?
2.fractal dimension是什么意思
3.絮凝体详细资料大全
4.利用分形法对金铅锌矿资源总量预测
dimensions 是什么意思?
dimension (复数为dimensions)
n. 方面;[数] 维;尺寸;次元;容积 vt. 标出尺寸
adj. 规格的
网络释义:
Fractal dimension 分形维数 ; 分维 ; 分数维 ; 分维数
Hausdorff dimension 豪斯多夫维数 ; 豪斯多夫维 ; 豪斯道夫维数 ; 夫维度
dimension line 尺寸线 ; 尺度线
具体释义与例句:
1.N-COUNT A particular dimension of something is a particular aspect of it. 方面
例:
There is a political dimension to the accusations.
这些指控含有政治因素。
2.N-COUNT A dimension is a measurement such as length, width, or height. If you talk about the dimensions of an object or place, you are referring to its size and proportions. (单数) 尺寸; (复数) 比例大小
例:
Drilling will continue on the site to assess the dimensions of the new oilfield.
钻探还将继续在现场进行以估测新油田的大小。
3.N-PLURAL If you talk about the dimensions of a situation or problem, you are talking about its extent and size. 规模
例:
The dimensions of the market collapse, in terms of turnover and price, were certainly not anticipated.
股市崩盘的规模,无论从成交量还是价格来看,都是出乎意料的。
其他例句:
1.
You will then have a folder for each dimension. 然后每一个维度都将具有一个文件夹。
2.
Dimension the shelves so that they fit securely into the cabinet.
把搁板刨成需要的尺寸以便它们可牢固地镶入贮藏橱中。
3.
Even if this practice provides many benefits by concentrating the analysis and designefforts on the usage dimension of a system, it is still not enough.
即使这种实践通过将精力集中在一个系统使用维度方面的分析与设计上,来提供很多好处,但它仍然是不够的。
fractal dimension是什么意思
高等代数中dim的意思是:维度。原词是:dimension
dimension
1、n. 方面;[数] 维;尺寸;次元;容积 vt. 标出尺寸
2、adj. 规格的 扩展资料
短语:
1、fractal dimension 分形维数;碎形维
2、one dimension 一维,单面向
3、two dimension 二维
4、third dimension 第三维;立体感;栩栩如生
5、dimension stability 尺寸稳定性
例句:
In this case, the dimension is the country.
在这个例子当中,那个维度就是国家。
絮凝体详细资料大全
fractal dimension
分形维数
双语对照
词典结果:
fractal dimension
[英][?fr?kt?l di?men?n][美][?fr?kt?l d?m?n?n]
分形维数;
.
-----------------------------------
如有疑问欢迎追问!
满意请点击右上方选为满意回答按钮
利用分形法对金铅锌矿资源总量预测
絮凝体,即美籍法国数学家曼德布罗特提出的絮凝体的分形结构模型 基本介绍 中文名 :絮凝体 阶段 :凝聚和絮凝 理论产生 :美籍法国数学家曼德布罗特 模拟模型 :絮凝体的分形结构模型 简介,概述,模拟模型,计算方法,套用,研究展望,参考文献, 简介 凝聚和絮凝是混凝过程的两个重要阶段,絮凝过程的完善程度直接影响后续处理(沉淀和过滤)的处理效果。但絮凝体结构具有复杂、易碎和不规则的特性,以往对絮凝的研究中由于缺乏适用的研究方法,通常只考虑混凝剂的投入和出水的混凝效果,而把混凝体系当作一个“黑箱”,不做深入研究。即使考虑微观过程,也只是将所有的胶粒抽象为球形,用已有的胶体化学理论及化学动力学理论去加以解释[1],得出的结论与实验中实际观察到的胶体和絮凝体的特性有较大的差别。尽管有的研究者在理论推导和形成最终的数学表达式时引入了颗粒系数加以修正,但理论与实验结果仍难以一致。而分形理论的提出,填补了絮凝体研究方法的空白。作为一种新兴的絮凝研究手段,,分形理论启发了研究人员对絮凝体结构、混凝机理和动力学模型作进一步的认识。 概述 1.1分形理论的产生1975年[2],美籍法国数学家曼德布罗特(B.B.Mandelbrot)提出了一种可以用于描绘和计算粗糙、破碎或不规则客体性质的新方法,并创造了分形(fractal)一词来描述。
分形是指一类无规则、混乱而复杂,但其局部与整体有相似性的体系,自相似性和标度不变性是其重要特征。体系的形成过程具有随机性,体系的维数可以不是整数而是分数[3]。它的外表特征一般是极易破碎、无规则和复杂的,而其内部特征则是具有自相似性和自仿射性。自相似性是分形理论的核心,指局部的形态和整体的形态相似,即把考察对象的部分沿各个方向以相同比例放大后,其形态与整体相同或相似。自仿射性是指分形的局部与整体虽然不同,但经过拉伸、压缩等操作后,两者不仅相似,而且可以重叠。
分形理论给部分与整体、无序与有序、有限与无限、简单与复杂、确定性与随机性等概念注入了新的内容,使人们能够以新的观念和手段探索这些复杂现象背后的本质联系。
1.2絮凝体的分形特性
絮凝体的成长是一个随机过程,具有非线性的特征。若不考虑絮凝体的破碎,常规的絮凝过程是由初始颗粒通过线形随机运动叠加形成小的集团,小集团又碰撞聚集成较大集团,再进一步聚集,一步一步成长为大的絮凝体。这一过程决定了絮凝体在一定范围内具有自相似性和标度不变性,这正是分形的两个重要特征[4],即絮凝体的形成具有分形的特点。 模拟模型 2.1絮凝体的分形结构模型
为了更好地了解絮凝体的形成过程并尽可能地加以预测,经过大量的研究提出了众多的絮凝体结构模型。
2.1.1早期的絮体结构模型
最早的一个模型[5]是由Vold通过计算机模拟提出的具有3层结构的模式:(见图1[4])初始颗粒,絮凝体与絮凝体聚集体。该絮凝体结构由一中心核与一群向外延展的触须(突起)形成的粗糙表面构成。该絮凝体的形成是由初始颗粒随机运动叠加而成,不考虑内部重组过程。而絮凝的进一步聚集也即形成第三层次的聚集结构,从而导致快速沉降与肉眼可见的悬浮颗粒。进一步分析其结构特征表明絮凝体密度随着中心向外逐渐降低,并由此推导出絮凝体密度随粒径变化的经验公式Stokes定律。
SutheRLAnd对Vold絮凝体模式颗粒聚集过程中的随机特征提出了批评[6]。他认为絮凝体成长的主要机理不在于单独颗粒的碰撞而在于包含有不同数目颗粒的簇团之间的碰撞聚集,这看起来更符合逻辑。因为事实上初始颗粒的碰撞只是在较小的簇形成期间显得十分重要。与Vold模型相比,Sutherland模型(见图2[4])形成更为多孔疏松的结构,具有较低的密度。随着粒度的增加其密度降低而孔隙度也随着增加。当絮凝体成长过程中结构内部重整也将会发生。在悬浮液搅拌过程中发生同向絮凝时,絮凝体的聚集条件将会发生变化。流体剪下力将会破坏絮凝体结构从而在一定条件下导致具有特征粒度的絮凝体形成。Sutherland模型仅仅适用于絮凝体粒度不大于数um。
絮体的复杂结构使得对其进行定量描述十分困难。早期提出的模型从不同角度对絮体结构进行了定量分析与描述,一定程度上涉及了分形特征,但因没有归纳出其中分型概念而没有得到广泛运用。
2.1.2絮体结构模型的发展
早期模型所考虑的初始颗粒均为单一粒度的均匀球体,而通常所发生的情形不尽如此。Good-arz-Nia建立了新的模型[7],其初始颗粒粒度分布基于一标准常态分配,为具有不同轴半径比的椭圆形初始颗粒,而结构由初始颗粒形成的链组成。计算所得絮体颗粒粒径与具有单一粒度分布的情形并没有太大的区别。絮体体积相对而言却变得较小。这是由于小颗粒的存在得以填充粒间间隙并导致更为密实的絮体。
Vold模型和Sutherland模型中,颗粒和簇团的运动都是按线性路线进行的,并不包括布朗运动,这与实际情况不符Witten&sander对此作出修正[8],他们设定了多个种子颗粒作为生长点,其它颗粒在随机位置加入并作随机行走直至达到与种子颗粒相邻的位置,相互粘附成为成长中的集团,然后不断加入颗粒至形成足够大的絮体。
Francois&VanHaute提出了具有四层的絮凝体结构模型[7]:初始颗粒、絮粒(flouli)、絮凝体与絮凝体聚集体。与先前模型不同的是,该模型认为不同次絮凝体结合键属于弹性可变的。在弹性模型中,流体剪下力可以穿透絮体中所有颗粒。多层絮体结构模式与絮体的分形结构特征相一致,只是絮体分维将随着不同簇团的形成而发生相应的变化。
2.2絮凝体分形结构动力学生长模型[9]
随着对分形生长过程研究的逐步深入,提出了各种动力学生长模型,基本上可以归纳为三类,即:
1)扩散控制聚集模型(Diffusion-LimitedAggregation),简称为DLA模型;
2)弹射聚集模型(BallisticAggregation),简称为BA模型;
3)反应控制聚集模型(Reaction-limitedAggregation),简称为RLA模型。
这三类模型中的每一种又可分为两部分,单体(Monomer)的聚集和集团(Cluster)的聚集。在DLA模型中,单体聚集被称为Witten-Sander模型,集团聚集称为有限扩散集团凝聚模型(Diffusion-LimitedClusterAggregation),简称为DLCA模型。相应的,在BA模型中有Vold模型与Sutherland模型之分;RLA模型中有EDEN模型与Reaction-LimitedClusterAggregation(RLCA)模型之分。 计算方法 表征分形体系特征的参数是分形维数(FractalDimension),它是对应于分形体的不规则性和复杂性或空间填充度量的程度。由于研究对象的不同,存在多种不同的维数定义。常用的颗粒形态分形维数有4种:D、D1、D2和Dk。D、D1、D2和Dk分别是从面积与周长、长度和周长、长度和面积、面积和阶数(rank)的关系得到。数学关系式如下:
P∝AD/2;P∝LD1;A∝LD2;Nr(a>A)∝A–Dk/2。
其中P为周长,A为面积,L是颗粒的最大长度,Nr是具有面积a(a>A)的絮体数量或阶数。D、Dk和D2的瞬时变化与观测到的颗粒形态变化相一致,并可量化,D1则不具有这一特点[10]。
目前分形维数的计算方法一般有两种途径:计算机模拟絮凝体成长过程和实验直接测定。计算机模拟计算是基于絮凝体的形成机制,在20世纪70—80年代运用较多;随着科学技术的发展,通过先进仪器直接测定分形维数已成为可能,目前采用较多的有图像法、粒径分布法、光散射法、沉降法等。 3.1计算机模拟计算[8]
计算机对絮凝体成长过程的模拟要根据实际情况选择合适的动力学模型和结构模型进行。具体的模拟方法有两种:格线模拟和非格线模拟。
格线模拟是在一个具有周边界条件的格线平面(二维)或立方体格线空间(三维)进行。所谓周期边界是指当颗粒在运动过程中溢出格线边界时,由对称的地方重新进入。
非格线模拟是在一个连续的有限空间内进行,与格线模拟义格子长度为单位不同,非格线模拟以颗粒粒径为单位度量,各颗粒或基团的位置由其质心决定。
两种方法由于所采用框架不同,得到的絮体形态有所差别,格线模拟得到的絮体中颗粒为正方形(二维)或立方体(三维);非格线模拟得到的絮体中颗粒为圆形(二维)或球体(三维),絮体圆滑度较格线模拟要好。
3.2直接测定
3.2.1图像法[11,12]
通过显微摄影技术,对水中絮凝体进行放大拍摄,运用计算机图像处理软体分析拍摄的絮凝体图像,可以测得絮凝体的投影面积A、周长P和在某一方向的最大长度L,根据下述关系求得一维和二维分形维数:
P∝LD1(1)
A∝PD2或A∝LD2(2)
三维分形维数一般不能通过图像法直接得到,需要进行一定的转换。一种方法是根据投影面积求得等面积圆的直径dp(即当量直径),再将其换算成球体体积V,根据下式推算D3:
V∝PD3或V∝LD3(3)
但有研究认为,这种方法计算的三维分形维数偏差较大,建议以与投影面积同等大小的椭圆换算成椭球体体积再用(3)式计算。图像法是目前普遍运用的分形维数计算方法。
3.2.2粒径分布法[13]
此法又称为双斜率法,通过测定同等条件下以特征长度L(一般为某一方向最大长度)为参数的累积颗粒浓度分布曲线N(L)和以絮凝体体积为参数的分布曲线N(v)的斜率求得。
长度和体积分布函式分别如下:
N(L)=ALLSL(4)
N(V)=AvvSv(5)
式中SL和Sv分别为长度与体积颗粒分布曲线指数,AL和Av为常数。由于是同等条件下的累积分布曲线,因此有:
N(L)=N(v)(6)
则:ALLSL=AvvSv(7)
一般认为絮凝体由初始颗粒(PrimaryParticle)组成。用初始颗粒长度L,形状系数α,密度ρ,堆积系数β表示出体积v为:
v=m/ρ=ψD/3αL3-DLD(8)
将(8)式代入(7)式有:
ALLSL=Av(ψD/3αL3-D)SvLDSv(9)
(9)式两边的L项指数应该相等,则有:
D=SL/Sv
如果知道颗粒以长度和体积为参数的分布曲线,根据曲线斜率按上式可计算出分形维数。
3.2.3其它方法[14]
沉降法是通过测定或计算絮凝体沉降速度u与特征长度L之间的关系u∝LD,从而推算分形维数,该方法适用于絮凝体比较密实并且不易破碎的情况。
光散射法是通过小角度X射线散射法,根据散射光强I(q)与光波矢量q之间的关系I(q)=|q|D求得分形维数。该方法是以瑞利(Rayleigh)散射为前提,当絮凝体粒径太大时,产生的偏差较大。
用静态光散射测定快速絮凝的絮凝体模型分维数是1.75~1.80,而用沉降法测定快速絮凝的絮凝体分维数是1.65~1.70;对架桥絮凝体用静态光散射法测定的维数是2.12,而用沉降法测定的维数是1.81[3]。其中,光散射法对小的、松散的絮凝体测定效果好,而沉降法对絮凝体大的、致密的絮凝体测定效果好。
此外,还有通过改变观察尺度求分形维数,根据相关函式求分形维数,根据频谱求分形维数等方法。 套用 4.1分形参数与混凝效果的关系
一些研究人员通过实验验证了絮凝体的分形参数与混凝效果的关系。常颖[15]、李孟[16]等对混凝控制的研究表明:对应不同的原水浊度,改变混凝剂的投量后絮凝体的分形维数和沉后水浊度可表现出良好的相关性。陆谢娟等[17]的实验讨论了不同的投药量、搅拌条件、沉淀时间下,形成的絮凝体结构和絮凝体分形维数的关系,发现絮凝效果好时,絮凝体的分形维数值偏高;分形维数在反映絮凝体絮凝变化程度时是非常灵敏的,可以用不同分形维数值来表征不同条件下形成的絮凝体的自相似分形特征。因此可以通过测定分形维数来控制混凝时絮凝体的成长。
4.2套用实例
水处理过程中,絮体的分形特性对调节颗粒物的传输与去除发挥着重要的作用。如李冬梅等[18]在对以黄河泥沙为代表的高浓度悬浊液架桥絮凝实验研究中通过对电镜照片(图1)中絮体维数的测定,发现在慢速絮凝阶段的中前期(絮凝时间180秒),絮凝体“分维”达最大值,结构的密实程度为最佳,,此时,絮凝体孔隙率最小,粒度分布最集中,沉速最快(见图1(c))。
a—絮凝时间10s(快搅结束时拍摄);b—絮凝时间50s(慢搅过程拍摄);c—絮凝时间180s(慢搅过程拍摄);d—絮凝时间600s(慢搅结束时拍摄);e—搅拌停止15s后拍摄;f—a图的局部扫描照片(放大倍数为5000倍)?a~e为絮凝体显微摄像照片(放大倍数为180倍)
实验结果同时表明:⑴絮凝体构造由瞬间形成的“分维”较低的DLCA模式逐步过渡到“分维”较高的RLCA模式,最后趋于相对稳定构型。⑵絮凝体分形结构演变过程导致絮凝体内部渗透性显著不同,当D3>2时,D3越大,絮凝体沉速越高;当D3 研究展望 传统的絮凝理论提供了模拟与计算的基本框架,结合分形理论对絮凝机理作进一步研究可以深化我们对其过程及内涵的理解。混凝过程中絮凝体分维值的变化可以用来预测不同的絮凝体结构的转折点,还可以进一步对絮凝体形成的影响因素进行研究,提出最佳的混凝控制条件。然而,对絮凝机理的研究尚处于起步阶段,虽然产生了许多混凝动力学模型,但是基于微观表象强加于模型上的约束条件,使它们并不能完满地描述混凝过程的实际情况。研究人员对混凝机理与动力学过程的认识仍局限于简单体系中絮凝过程的探讨,对复杂体系过程的研究还有待进一步深入。 参考文献 [1]陆谢娟李孟唐友尧.絮凝过程中絮凝体分形及其分形维数的测定[J].华中科技大学学报(城市科学版),2003,20(3):46-49.
[2]张越川张国祺.分形理论的科学和哲学底蕴[J].社会科学研究,2005(5):81-86.
[3]王峰李义久倪亚明.分形理论发展及在混凝过程中的套用[J].同济大学学报,2003,31(5):614-618.
[4]王晓昌丹保宪仁.絮凝体形态学和密度的探讨——从絮凝体分形构造谈起[J].环境科学学报,2000,20(3):257-262.
7.2.1.1 金矿资源总量预测(1)西秦岭成矿带中东段金资源现状
据收集的资料统计,目前西秦岭成矿带中东段金矿床共202个,资源总量1100042.78kg,其中超大型金矿1个(阳山金矿),资源量300000kg,占矿床(点)个数0.5%,占资源总量的27.3%;特大型矿床3个,资源量243668kg,占矿床(点)个数的1.49%,占资源总量的22.15%;大型金矿床10个,资源量290015kg,占矿床(点)个数的4.95%,占总资源量的26.37%;中型金矿床(点)22个,资源量209187kg,占矿床(点)个数的10.9%,占总资源量的19%;小型金矿床28个,资源量57137kg,占矿床(点)个数的13.9%,占总资源量的5.2%。
(2)分形法对金矿资源总量预测
Mandelbrot(1982)在其著作《自然分形几何》中引入了分形的概念;分形几何的主要概念是分维(FractalDimension),它是描述分形的定量表征参数。分维又称为分形维或分数维,在一般情况下是一个分数(可以是整数,也可以是非整数),为表征自然界普遍存在的不规则性、复杂性提供了科学方法。
分维有许多不同的表达式,人们常谈的分维是立足于自相似性的,可用下式表达:
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
式中:D表示分维;r表示测量中所使用的尺度;N(r)表示用尺度r测量得到的集合。
式7.1提供了测定分维的方法,即只要测出一系列的r与相应的N(r),在双对数坐标下,N(r)-r直线部分的斜率就是研究对象的分维D。需要指出,从理论上讲r的变化是无限量的,但在实际应用中却是有限量的,且存在着标度区。
1983年,Mandelbrot首先将分形分布理论应用于建立矿体的空间分布模型。近年来,分形理论的研究与应用发展相当迅速,地质学家已经将分形理论引入到地质学的许多方面,在矿床学领域有很多应用实例,如Carlson(1991)用分形理论研究美国西南成矿省,金-银矿床的空间分布,Blenkinsop研究非洲津巴布韦金矿床的空间分布,沈步明等(1993)研究了新疆某金矿的分维数特征,张哲儒等(1993)研究了贵州紫木凼金矿的钻孔品位分形分布,DavidJ.Sanderson等(1994)总结了西班牙LaCodosera金矿石英脉厚度与品位之间的分形关系,K.J.W.McCaffrey等(1996)研究了西班牙Curraghinalt金矿床的分形分布特征,Monecke等(2001)研究了澳大利亚Hellyer矿区VHMS型铅锌矿床的分形分布。宋保昌(2002)研究了山西堡子湾金矿分形分布,许顺山(1999)研究了紫金金矿的分形特征。李长江(1999)研究了世界大于50t的金矿的储量分布和中国大于2t的金矿的储量分布,以及对中国总的资源量进行了预测。
矿床数量与资源量的分形关系式为
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
式中:N0为具有某一确定资源量M0的矿床数目;N为资源量M大于M0的矿床数目;D为分维数。
如果以Nc表示资源量大于M的矿床累积数;则式7.2转换为
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
式中:Nc为资源量大于M的矿床累积数;k为比例系数。
引入Barton和Scholz(1985)结果,对式7.3定义一密度函数(频目作为资源量的一个函数):
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
则分布函数:
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
则根据金矿资源量大于M的矿床数目Nc与M的关系的分形统计参数,由式7.6对潜在的规模大于金矿床的总量进行估算。
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
式中:n为一个区域内资源量为Mi(i=1,2,3…,n)的矿床数目;Mcacl为矿床的总资源量;k为资源量-数量分形关系式中的比例常数;D为分维数。
据收集的资料不完全统计,西秦岭成矿带中东段大于1t的金矿床数目62个,大于2t的金矿床数目51个,大于5t的金矿床数目36个,大于20t的金矿床数目14个,大于50t的金矿床数目4个,大于100t的金矿床数目1个(表7.13)。
表7.13 金矿床规模大于M的矿床数目
图7.18 金矿资源量大于M的矿床数Nc与M的关系
投在双对数坐标图上(图7.18),可以看出资源量大于1t的金矿床资源量-数量分布线中,资源量从50t开始明显变化,数据点下偏,小于2t的金矿床数据点也下偏。这是矿床勘查过程中的“记不全”和“没查全”所造成。
取2~50t的矿床利用最小二乘法进行拟合,则与分形数D=1.22的直线吻合较好,无标度区间在2个数量级,表明西秦岭成矿带中东段金矿床资源量-数量是分形分布。图7.18暗示在西秦岭成矿带中东段还有相当数量的潜在的大型、超大型金矿。
目前西秦岭成矿带中东段已知20~50t的金矿床有10个,取平均资源量为35t代入式7.2得相关线是
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
由式7.7预测西秦岭成矿带中东段还可以找一批50~500t的大型、超大型、特大型金矿。
另外,目前西秦岭成矿带中东段金矿资源大于100t的特大型金矿为阳山金矿(300t)一个矿床,由图7.18分析得出阳山金矿资源量至少可达350t。
利用式7.6进行西秦岭成矿带中东段金资源规模大于50t的资源总量进行估算,设Mmax=1000t,由图7.18及式7.7得Mmin=50t,k=52.9,D=1.22,求得ΣMcacl=1756.8t,减去已发现的大于50t的金资源量543.668t,则西秦岭成矿带中东段潜在的大于50t的金矿床的资源量为1213.132t。
7.2.1.2 利用分形法对铅锌矿资源总量预测
(1)西秦岭成矿带中东段铅锌矿资源现状
西秦岭地区铅锌矿主要产于西成盆地,凤太盆地,近几年在卓尼县发现产于石炭系中的铅锌矿;矿围岩是海相碳酸盐岩、泥岩。
据收集的资料统计,目前西秦岭成矿带中东段铅锌矿床(点)共85个,资源总量2922.4万t;其中特大型矿床1个,资源量800万t,占矿床(点)个数的0.99%,占资源总量的27.4%;大型矿床12个,资源量2139.216万t,占矿床(点)个数的11.9%,占总资源量的73.2%;中型矿床(点)11个,资源量370.6092万t,占矿床(点)个数的10.9%,占总资源量的12.7%;小型矿床14个,资源量70万t,占矿床(点)个数的13.9%,占总资源量的2.4%。
(2)分形法对铅锌矿资源总量预测
西秦岭成矿带中东段铅锌矿据收集的资料不完全统计,西秦岭成矿带中东段大于5万t的铅锌矿床数目38个,大于10万t的铅锌矿床数目24个,大于30万t的铅锌矿床数目16个,大于50万t的铅锌矿床数目13个,大于100万t的铅锌矿床数目7个,大于200万t的铅锌矿床数目4个,大于300万t的铅锌矿床1个(表7.14)。投在双对数坐标图上(图7.19),可以看出资源量大于1万t的铅锌矿床资源量-数量分布线中,资源量从200万t开始明显变化,数据点下偏,小于1万t的铅锌矿床数据点也下偏。这是矿床勘查过程中的“记不全”和“没查全”所造成。
表7.14 铅锌矿床规模大于M的矿床数目
图7.19 铅锌矿资源量大于M的矿床数Nc与M的关系
取1~200万t的矿床利用最小二乘法进行拟合,则与分形数D=1.8的直线吻合较好,无标度区间在2个数量级,表明西秦岭成矿带中东段铅锌矿床资源量-数量是分形分布。图7.19暗示在西秦岭成矿带中东段还有相当数量的潜在的大型、超大型铅锌矿。
目前西秦岭成矿带中东段已知100~500万t的铅锌矿床有7个,取中间值资源量为275万t代入式(1)得相关线是:
西秦岭成矿带中东段金(铅锌)多金属矿成矿规律及资源潜力评价
由式7.8预测西秦岭成矿带中东段还可以找一批100~500万t的大型、超大型特大型铅锌矿。
利用式7.6进行西秦岭成矿带中东段铅锌资源规模大于100万t的资源总量进行估算,设Mmax=500万t,由图7.19及式7.8得Mmin=100万t,k=546.97,D=1.8,求得ΣMcacl=4668.36t,减去已发现的大于100万t的铅锌资源量1428.143t,则西秦岭成矿带中东段潜在的大于100万t的铅锌矿床的资源量为3240.22万t。
非常高兴能与大家分享这些有关“fractal dimension”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。