大数学家欧拉_大数学家欧拉出生于 _大数学家欧拉出生于

       最近有些日子没和大家见面了,今天我想和大家聊一聊“大数学家欧拉”的话题。如果你对这个领域还比较陌生,那么这篇文章就是为你而写的,让我们一起来探索其中的奥秘吧。

1.欧拉公式\欧拉方程是什么?

2.欧拉是哪个世纪的数学家?

3.欧拉最著名的著作是什么

4.数学家们是如何评价欧拉的呢?

5.瑞士数学家欧拉有哪些成就?

大数学家欧拉_大数学家欧拉出生于

欧拉公式\欧拉方程是什么?

       欧拉公式(英语:Euler's formula,又称尤拉公式)是复分析领域的公式,它将三角函数与复指数函数关联起来,因其提出者莱昂哈德·欧拉而得名。欧拉公式提出,对任意实数?{\displaystyle x},都存在。

       欧拉方程,即运动微分方程,属于无粘性流体动力学中最重要的基本方程,是指对无粘性流体微团应用牛顿第二定律得到的运动微分方程。欧拉方程应用十分广泛。1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。

扩展资料:

       在物理学上,欧拉方程统治刚体的转动。我们可以选取相对于惯量的主轴坐标为体坐标轴系。这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。

       在流体动力学中,欧拉方程是一组支配无粘性流体运动的方程,以莱昂哈德·欧拉命名。方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零粘性及无热传导项的纳维-斯托克斯方程。历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。

       百度百科-欧拉方程

欧拉是哪个世纪的数学家?

        童年自学几何的欧拉

        大数学家欧拉小时候是一个非常聪明好问的孩子。有一次,在巴塞尔神学校的课堂上,小欧拉谦恭地向神职老师发问:“既然上帝无所不能,他能告诉我天上有多少颗星星吗?”

        老师回答道:“这是无关紧要的,我们作为上帝的孩子,记住这一点就足够了,星星都是上帝亲手一颗颗地镶嵌在天幕上的。”

        小欧拉百思不得其解:“既然星星是由上帝一手安置的,他总该告诉我们一个具体数目吧?”

        神学老师再也回答不了小欧拉的问题,他无可奈何地摇摇头叹道:“可怜的孩子,迷途的羔羊。”

       

        就这样小欧拉竟被神学校开除了。

        老欧拉十分伤心地接回了儿子小欧拉,心想总得积攒点学费送他上别的学校啊!老欧拉决定扩展羊圈,多养些羊,他招呼儿子,帮忙拆改旧羊圈。

        可是没有多余的篱笆,这该怎么办呢?老欧拉没有了主意。

        这时,站在一旁的小欧拉不慌不忙地说:“爸爸,篱笆有了。你看,旧羊圈长70码,宽30码,面积为2100平方码,改成50码见方的新羊圈,不用添篱笆,羊圈就扩大了400平方码。”

        “太妙了,你是怎么想到的?”

        “我是从您书橱的《几何学》上看来的。如果把羊圈围成圆形,面积将最大,有3100多平方码呢!”

        老欧拉明白了,原来儿子在自学数学,放羊时还见他在草地上画来画去。小欧拉自学数学的热情打动了老欧拉,他决心让儿子进入古老而神秘的数学王国。

        小欧拉扩大羊圈不添篱笆的事实说明:在周长一定的情况下,正方形的面积比长方形面积大,而圆又比正方形的面积大。这可是他自学得来的呢!

        由于小欧拉勤奋努力,他长大后终于成为了卓有成效的数学家。

欧拉最著名的著作是什么

       欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

       事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"

       欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?

       他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。

       在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

       回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,幻娑潦椤K?恋氖橹校?胁簧偈?椤?

       爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。

       小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。

       父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。

       小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"

       父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

       父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学家们是如何评价欧拉的呢?

       1.数论

       欧拉的一系列成奠定作为数学中一个独立分支的数论的基础。欧拉的著作有很大一部分同数的可除性理论有关。欧拉在数论中最重要的发现是二次反律。

       2.代数

       欧拉《代数学入门》一书,是16世纪中期开始发展的代数学的一个系统总结。

       3.无穷级数

       欧拉的《微分学原理》(Introductio calculi differentialis,1755)是有限差演算的第一部论著,他第一个引进差分算子。欧拉在大量地应用幂级数时,还引进了新的极其重要的傅里叶三角级数类。1777年,为了把一个给定函数展成在(0,“180”)区间上的余弦级数,欧拉又推出了傅里叶系数公式。欧拉还把函数展开式引入无穷乘积以及求初等分式的和,这些成果在后来的解析函数一般理论中占有重要的地位。他对级数的和这一概念提出了新的更广泛的定义。他还提出了两种求和法。这些丰富的思想,对19世纪末,20世纪初发散级数理论中的两个主题,即渐近级数理论和可和性的概念产生了深远影响。

       4.函数概念

       18世纪中叶,分析学领域有许多新的发现,其中不少是欧拉自已的工作。它们系统地概括在欧拉的《无穷分析引论》、《微分学原理》和《积分学原理》组成的分析学三部曲中。这三部书是分析学发展的里程碑四式的著作。

       5.初等函数

       《无穷分析引论》第一卷共18章,主要研究初等函数论。其中,第八章研究圆函数,第一次阐述了三角函数的解析理论,并且给出了棣莫佛(de Moivre)公式的一个推导。欧拉在《无穷分析引论》中研究了指数函数和对数函数,他给出著名的表达式(这里i表示趋向无穷大的数;1777年后,欧拉用i表示 ),但仅考虑了正自变量的对数函数。1751年,欧拉发表了完备的复数理论。

       6.单复变函数

       通过对初等函数的研究,达朗贝尔和欧拉在1747-1751年间先后得到了(用现代数语表达的)复数域关于代数运算和超越运算封闭的结论。他们两人还在分析函数的一般理论方面取得了最初的进展。

       7.微积分学

       欧拉的《微分学原理》和《积分学原理》二书对当时的微积分方法作了最详尽、最有系统的解说,他以其众多的发现丰富可无穷小分析的这两个分支。

       8.微分方程

       《积分原理》还展示了欧拉在常微分方程和偏方程理论方面的众多发现。他和其他数学家在解决力学、物理问题的过程中创立了微分方程这门学科。

       在常微分方程方面,欧拉在1743年发表的论文中,用代换 给出了任意阶常系数线性齐次方程的古典解法,最早引人了“通解”和“特解”的名词。1753年,他又发表了常系数非齐次线性方程的解法,其方法是将方程的阶数逐次降低。

       欧拉在18世纪30年代就开始了对偏微分程的研究。他在这方面最重要的工作,是关于二阶线性方程的。

       9.变分法

       1734年,他推广了最速降线问题。然后,着手寻找关于这种问题的更一般方法。1744年,欧拉的《寻求具有某种极大或极小性质的曲线的方法》一书出版。这是变分学史上的里程碑,它标志着变分法作为一个新的数学分析的诞生。

       10.几何学

       坐标几何方面,欧拉的主要贡献是第一次在相应的变换里应用欧拉角,彻底地研究了二次曲面的一般方程。

       微分几何方面,欧拉于1736年首先引进了平面曲线的内在坐标概念,即以曲线弧长这一几何量作为曲线上点的坐标,从而开始了曲线的内在几何研究。1760年,欧拉在《关于曲面上曲线的研究》中建立了曲面的理论。这本著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的里程碑。

       欧拉对拓扑学的研究也是具有第一流的水平。1735年,欧拉用简化(或理想化)的表示法解决了著名的歌尼斯堡七桥游戏问题得到了具有拓扑意义的河-桥图的判断法则,即现今网络论中的欧拉定理

瑞士数学家欧拉有哪些成就?

       欧拉开创了数学史上的欧拉时代。他在当时所拥有的三、四十门数学分支里都有成果,而且都是里程碑式的突破和奠基。欧拉是神童。如果世界上没有天才的话,最后一个被推翻的“天才”只能是他。也就是说,你必须承认他是,即使你不承认别人。数学家们评价欧拉:“欧拉计算毫不费力,就像呼吸、吃饭、睡觉那样自然,对于他来说,数学计算就像鹰在风中保持平衡一样那么出于本能。”

       科学家大多都很多产,一生写下几十部书不算稀奇的事,但是能写出886本书的恐怕就只有瑞士数学家欧拉了。他从19岁开始发表论文,直到76岁,利用半个多世纪的时间为后人留下了浩如烟海的书籍和论文,这在科学史上是极为少见的。

       欧拉于1707年4月15日出生于瑞士的巴塞尔一位牧师的家庭,父亲是一个数学家。从小受家庭环境的影响,他对数学产生了浓厚的兴趣。欧拉天生聪慧,13岁时便就读巴塞尔大学,15岁获得学士学位,次年获硕士学位。

       离开学校后的欧拉在瑞士没有找到合适的工作。1727年,他应邀到俄罗斯圣彼得堡做著名教授丹尼尔的助手。1731年,他领导理论物理和实验物理教研室的工作。两年后,年仅26岁的欧拉接替丹尼尔,成为彼得堡科学院数学部的***。

       在彼得堡科学院期间,欧拉勤奋地工作,取得了很多研究成果。1735年,欧拉使用自己发明的新方法,仅花了三天时间就计算出了一颗彗星的轨迹。长时间的持续工作使他在这一年右眼失明,但这并没有降低他对科学研究的热情。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,提出质点或粒子的概念,同时,他还创立了分析力学、刚体力学,丰富和发展了牛顿的经典力学。

       18世纪中期,在研究物理问题过程中,欧拉写成了《方程的积分法研究》,创立了微分方程这门学科,并在此基础上对函数用三角级数表示的方法和解微分方程的级数法等等进行了深入地研究。

       1766年他在出版的《关于曲面上曲线的研究》中,建立了曲面理论,给出了空间曲线曲率半径的解析表达式。这篇著作在微分几何发展中占有重要地位,是微分几何发展史上的一个里程碑。

       长期而繁重的科学研究,使他的左眼也慢慢失去了光明,但他仍然没有放弃科学研究。1768年,他在圣彼得堡出版了《积分学原理》第一卷。两年后第三卷出版,并且口述完成了《代数学完整引论》,这部书在数学界引起了一番浪潮,几乎成为整个欧洲人学习的教科书。

       在天文学上,欧拉对月球运动及摄动问题进行了研究。创立了月球绕地球运动地精确理论,解决了连牛顿都没有解决月球运动的疑难问题。为了提高天文观测的效果,他还对天文望远镜、显微镜进行了研究。

       欧拉是科学历史上著作最多的数学家,除了写大量的研究性论文外,他还写了大量数学方面的课本,如《微分学原理》、《积分学原理》、《无穷小分析引论》等都成为数学史上的经典著作,其中《无穷小分析引论》为他赢得了“分析学的化身”的美誉。

       欧拉是18世纪最杰出的数学家,他不仅为数学的发展作出了不可磨灭的贡献,还把数学的理论和方法推广到了物理学的各个领域。数学界把他和阿基米德、牛顿和高斯并称为数学史上的“四杰”。1783年9月18日欧拉在俄国圣彼得堡突然疾病发作离开了人世,终年76岁。

       好了,今天关于大数学家欧拉就到这里了。希望大家对大数学家欧拉有更深入的了解,同时也希望这个话题大数学家欧拉的解答可以帮助到大家。